Effect of spacing on the growth and yield of boro rice (cv. BRRIdhan 36) under aerobic system

M.H. Rashid, M.M. Rahman, B.K. Pal ${ }^{1}$, M.A. Latif ${ }^{2}$ and H.M. Mishu ${ }^{3}$
Department of Agronomy, ${ }^{1}$ Department of Agricultural Extension Education, ${ }^{2}$ Department of Horticulture and ${ }^{3}$ Department of Crop Botany, Bangladesh Agricultural University, Mymensingh-2202

Abstract

A field experiment was carried out at the Agronomy Field Laboratory, Department of Agronomy during February to June, 2008 to evaluate the effect of row to row and hill to hill spacing on the yield performance and yield of boro rice cv. BRRI dhan 36 under aerobic system of cultivation. The experiment consists of three row to row spacing viz.; $20.0 \mathrm{~cm}, 25.0 \mathrm{~cm}$ and 30.0 cm and five hill to hill spacings viz. $2.5 \mathrm{~cm}, 5.0 \mathrm{~cm}, 10.0 \mathrm{~cm}, 15.0 \mathrm{~cm}$ and 30.0 cm . The trial was laid out in a randomiz complete block design with 3 replications. The crop sown at 20.0 cm row spacing gave the highest grain yield ($3.99 \mathrm{t} \mathrm{ha}^{-1}$). Similarly, the crop sown at 20.0 cm hill spacing produced the highest yield ($4.44 \mathrm{t} \mathrm{ha}^{-1}$). The results showed that the crop with 20.0 cm row to row spacing and 20.0 cm hill to hill spacing produced the highest grain yield ($4.90 \mathrm{tha}^{-1}$), whereas the lowest grain yield (2.55 tha) was found with $20.0 \mathrm{~cm} \times 2.5 \mathrm{~cm}$. The present study concludes that the highest grain yield of BRRI dhan36 during Boro season under aerobic system of rice cultivation could be possible on sowing at $20.0 \mathrm{~cm} \times 20.0 \mathrm{~cm}$ spacing.

Key words: Spacing, growth, yield, boro rice, aerobic system

Introduction

Rice (Oryza sativa L.) is the most extensively cultivated crop in Bangladesh. It is the staple food crop for Bangladesh and more than half of the world's population. Rice demand would increase by 25% within 2025 to keep pace with population growth (Maclean et al., 2002). Bangladesh is an agro-based country. The country earns about 23.46% of her gross domestic production from agriculture (Kiron, 2003). Geographic and agronomic conditions of Bangladesh are favourable for rice cultivation. In the year 2006-2007, the total area and production of rice in Bangladesh is about 10.58 million hectares and 27.32 million tons, respectively (BBS, 2007). The area and the production of rice in the country are 11.26 million hectares and 29.75 million tons, respectively (AIS, 2008). In Bangladesh there are three distinct growing seasons of rice, namely aus, aman and boro. Among these three seasons, boro rice covers larger area of about 4.30 million hectares with a production of 14.95 million tons (BBS, 2007). Rice is an important target for water use reductions because of its relatively large water requirements compared with other crops (Li, 2001 and Wang et al., 2002). Aerobic rice is a new way of cultivating rice that requires less water than lowland rice. In "aerobic rice systems", rice is grown like an upland crop with adequate inputs and supplementary irrigation when rainfall is insufficient (Bouman, 2001). The water requirement of aerobic rice is potentially much less than that of flooded rice because of (1) the absence of water use for wet land preparation (puddling), (2) the absence of continuous seepage and percolation losses from the layers of ponded water and (3) the absence of evaporation losses from the ponded water layer (Bouman et al., 2005). Aerobic rice varieties also offer water savings for watershort lowland production systems. To fulfill the increased rice demand with shrinking resources, it will be necessary to increase yield in a unit area with less water (Zhao, 2006). The growth, yield and yield components of rice are greatly influenced by plant spacing. Optimum plant spacing ensures the plants to grow properly both in their aerial and under ground parts through efficient utilization of solar radiation and nutrients (Miah et al., 1990). Proper spacing may help maximum light interceptions for better photosynthesis as well as yield of rice. Improper spacing may affect the physiological activities of rice plant and
account for yield reduction to the extent of 26% to 30%. Various experiments and research works relating to the effect of spacing of transplanted wet land flood system of rice cultivation in boro season are available but under aerobic condition are scarce. The specific objectives of the study were: to find out the interaction effect of row to row spacing and hill to hill spacing on the yield and related characters of boro rice cv. BRRI dhan36 under aerobic condition.

Materials and Methods

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, during 18 February to 19 June 2008 to study the effect of spacing on yield and related characters of boro rice (cv. BRRI dhan36) under aerobic system of cultivation. The land was medium high with soil having sandy loam texture. The land was flat, well drained and above the flood level. The pH value of the soil was 6.45 (UNDP and FAO, 1988). Treatments included 3 row spacing is $20 \mathrm{~cm}\left(\mathrm{~L}_{1}\right)$, $25 \mathrm{~cm}\left(\mathrm{~L}_{2}\right)$, and $30 \mathrm{~cm}\left(\mathrm{~L}_{3}\right)$ and 5 hill spacings is 2.5 cm $\left(\mathrm{P}_{1}\right), 5 \mathrm{~cm}\left(\mathrm{P}_{2}\right), 10 \mathrm{~cm}\left(\mathrm{P}_{3}\right), 15 \mathrm{~cm}\left(\mathrm{P}_{4}\right)$ and $20 \mathrm{~cm}\left(\mathrm{P}_{5}\right)$. The experiment was laid out in randomized complete block design with three replications. Each treatment was randomly allocated in the respective plot. The unit plot size was $4.0 \mathrm{~m} \times 2.5 \mathrm{~m}$. The distances maintained between replications were 1.0 m and unit plots were 0.75 m and various intercultural operations were done for maintaining the normal growth and development of the crop. The crop was harvested when about 90% of the seeds became golden yellow in colour. Five hills (excluding border hills) were randomly selected in each plot and uprooted before harvesting for recording the necessary data on various plant characters. Data were analyzed using the analysis of variance (ANOVA) technique with the help of computer package programme MSTATC and mean differences were adjudged by Duncan's Multiple Range Test (Gomez and Gomez, 1984).

Results and Discussion

Plant height: The results showed that the row to row, hill to hill and the interaction effect of row to row and hill to hill spacing did not show any significant effect on plant height (Table 1, 2 \& 3). It was found that 5.0 cm hill to hill spacing produced the tallest plant (75.47 cm) whereas 15.0 cm hill to hill spacing produced the shortest
(72.85 cm). The tallest plant (77.29 cm) was obtained from $30 \mathrm{~cm} \times 5 \mathrm{~cm}$ spacing and the shortest one (69.86 cm) was obtained from $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing. It was observed that plant height decreased as spacing decreased.
Number of tillers hill ${ }^{-1}$: It was observed (Table 1, 2 \& 3) that the row to row, hill to hill and the interaction effect of row to row and hill to hill spacing had a highly significant effect on the number of tillers hill ${ }^{-1}$. Effects on the number of total tillers hill ${ }^{-1}$ as influenced by 30.0 cm row to row spacing produced the highest (20.18) and the lowest one (15.40) was found in 20.0 cm row to row spacing. The highest number of tillers hill ${ }^{-1}$ (19.85) was produced from 20.0 cm hill to hill spacing whereas minimum number of tillers hill ${ }^{-1}$ (11.46) was found from 2.5 cm (Table 2). Wider spaced plants received more nutrient moisture and light which contributed to production of higher number tillers hill ${ }^{-1}$. This confirms the findings of Haque and Nasiruddin (1988). It was also observed that BRRI dhan36 produced the maximum number of tillers hill ${ }^{-1}$ (22.81) at the row to row spacing of $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ and minimum number of tillers hill ${ }^{-1}$ (13.25) at the spacing of $25 \mathrm{~cm} \times 2.5 \mathrm{~cm}\left(\mathrm{~L}_{2} \mathrm{P}_{1}\right)$.

Number of effective tillers hill ${ }^{-1}$: It was evident from Fig. $1 \& 2$ that row to row, hill to hill and the interaction of row to row spacing and hill to hill spacing had significant effect on the formation of number of effective tillers hill ${ }^{-1}$. It was observed from the results that 20.0 cm hill to hill spacing produced the maximum number of effective tillers hill $^{-1}$ (17.14). The number of tillers, specially the number of effective tillers hill ${ }^{-1}$ is one of the most important contributing characters forwards yield unit ${ }^{-1}$ area in rice. BRRI dhan 36 produced the maximum number of productive tillers hill ${ }^{-1}$ (21.14) at spacing $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ and spacing $20 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ produced minimum number of effective tillers hill ${ }^{-1}$ (10.37).
Number of total spikelets panicle ${ }^{-1}$: Number of total spikelets panicle ${ }^{-1}$ was significantly influenced by row to row, hill to hill and the interaction of row to row and hill to hill spacing. Table 1 show that the highest number of total spikelets (73.09) was obtained from 20.0 cm row to row spacing and the lowest number (65.90) was obtained from 30.0 cm row to row spacing. The highest number of total spikelets (76.24) was obtained from 20.0 cm hill to hill spacing (P_{5}) which was statistical identical to 15.0 cm hill to hill spacing $\left(\mathrm{P}_{4}\right)$ and the highest number of total spikelets (82.86) was obtained from the combination of $\mathrm{L}_{1} \mathrm{P}_{5}$ (20 $\mathrm{cm} \times 20 \mathrm{~cm}$ spacing) which was statistically identical to $20 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing $\left(\mathrm{L}_{1} \mathrm{P}_{5}\right)$. On the other hand, the lowest number of total spikelets (53.75) was observed from the combination of $\mathrm{L}_{3} \mathrm{P}_{1}(30 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ spacing).
Number of grains panicle ${ }^{-1}$: Number of grains panicle ${ }^{-1}$ was significantly influenced by row to row, hill to hill and influenced by row to row and hill to hill spacing. Fig. 3 shows that the highest number of grains (62.74) was obtained from 20.0 cm row to row spacing. The highest number of grains (61.98) was obtained from 20.0 cm hill to hill spacing (P_{5}) which was statistically identical to 15.0 cm hill to hill spacing $\left(\mathrm{P}_{4}\right)$. On the other hand, the highest number of grains (73.83) was obtained from the combination of $\mathrm{L}_{1} \mathrm{P}_{5}(20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing) and the
lowest one (37.35) was observed from the combination of $\mathrm{L}_{3} \mathrm{P}_{1}$ ($30 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ spacing).
Number of sterile spikelets panicle ${ }^{-1}$: Number of sterile spikelets panicle ${ }^{-1}$ was significantly influenced by row to row, hill to hill spacing and interaction between row to row and hill to hill. The highest number of sterile spikelets (19.48) was obtained from 30.0 cm row to row spacing and the lowest one (10.35) was obtained from 20.0 cm row to row spacing (Table 1). Table 2 shows that the highest number of sterile spikelets (16.06) was obtained from P_{2} (5.0 cm hill to hill spacing). The highest number of sterile spikelets (21.67) was obtained from the combination of 30 $\mathrm{cm} \times 20 \mathrm{~cm}$ spacing $\left(\mathrm{L}_{3} \mathrm{P}_{5}\right)$. On the other hand, the lowest number of sterile spikelets panicle ${ }^{-1}$ (8.58) was observed from the combination of $20 \mathrm{~cm} \times 10 \mathrm{~cm}$ spacing $\left(\mathrm{L}_{1} \mathrm{P}_{3}\right)$ which was statistically identical to $\mathrm{L}_{1} \mathrm{P}_{5}(20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing).
Weight of 1000 grains (g): Weight of 1000 grains shows that row to row, hill to hill and also the interaction between row to row and hill to hill spacing had no significant effect. It was found that the highest weight of 1000 grains (27.72 g) was obtained from 30.0 cm row to row spacing and the lowest one from 25.0 cm row to row spacing. On the other hand, Table 2 shows that the highest 1000 grains (27.86 g) was obtained from 2.5 cm hill to hill spacing and the lowest one (27.24 g) was obtained from 10.0 cm hill to hill spacing. The highest 1000 grains (28.63 g) was recorded from the combination of $\mathrm{L}_{3} \mathrm{P}_{3}$ (30 $\mathrm{cm} \times 15 \mathrm{~cm}$ spacing) and the lowest one (26.55 g) was recorded from the combination of $\mathrm{L}_{2} \mathrm{P}_{4}(25 \mathrm{~cm} \times 15 \mathrm{~cm}$ spacing).
Grain yield ($\mathbf{t} \mathbf{h a}^{-1}$): It was evident from analysis of variance that row to row, hill to hill and interaction between row to row and hill to hill spacing had significant effect on grain yield of BRRI dhan36. The result Fig. 5 showed that 20.0 cm row to row spacing produced the highest grain yield ($3.99 \mathrm{t} \mathrm{ha}^{-1}$) whereas 30.0 cm row to row spacing produced the lowest grain (3.44 t ha^{-1}) which was statistically identical to $25.0 \mathrm{~cm}\left(\mathrm{~L}_{2}\right)$ row to row spacing ($3.48 \mathrm{tha}{ }^{-1}$) and 20.0 cm hill to hill spacing produced the highest grain yield ($4.44 \mathrm{t} \mathrm{ha}^{-1}$). On the other hand, the lowest grain yield ($2.55 \mathrm{tha}{ }^{-1}$) was obtained from $25 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ spacing ($\mathrm{L}_{2} \mathrm{P}_{1}$) which was statistically identical to $30 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ spacing $\left(\mathrm{L}_{3} \mathrm{P}_{1}\right)$ producing $2.63 \mathrm{t} \mathrm{ha}^{-1}$ grains.
Straw yield (t ha ${ }^{-1}$): Straw yield was significantly influenced by the row to row, hill to hill and the interaction of row to row and hill to hill spacing. It was observed from Table 1 that 20.0 cm row to row spacing produced the highest straw yield ($5.78 \mathrm{t} \mathrm{ha}{ }^{-1}$) and 20.0 cm row to row spacing produced the lowest straw yield (4.60 t ha^{-1}). It is also evident that 30.0 cm hill to hill spacing produced the highest straw yield ($5.89 \mathrm{th} \mathrm{h}^{-1}$). The highest straw yield ($6.83 \mathrm{t} \mathrm{ha}{ }^{-1}$) was recorded from the interaction of $L_{1} P_{5}$ ($20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing) and lowest straw yield (3.38 tha ${ }^{-1}$) was recorded from the combination of $\mathrm{L}_{2} \mathrm{P}_{1}$ ($25 \mathrm{~cm} \times 2.5 \mathrm{~cm}$) spacing.
Biological yield: Biological yield was significantly influenced by row to row, hill to hill and the interaction of row to row and hill to hill spacing. The highest biological yield ($9.77 \mathrm{t} \mathrm{ha}^{-1}$) was obtained from 20.0
cm row to row spacing (Table 1). Hossain (2002) reported that highest biological yield was obtained from wider spacing. The spacing $25 \mathrm{~cm} \times 15 \mathrm{~cm}$ produced the highest grain and straw yields which resulted in the highest biological yield. Table 2 shows that the highest biological
yield ($10.33 \mathrm{t} \mathrm{ha}{ }^{-1}$) was obtained from $\mathrm{P}_{5}(20.0 \mathrm{~cm}$ hill to hill spacing). The highest biological yield ($12.73 \mathrm{t} \mathrm{ha}^{-1}$) was recorded from the interaction of $\mathrm{L}_{1} \mathrm{P}_{5}(20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing) and the lowest one ($6.72 \mathrm{t} \mathrm{ha}^{-1}$) was recorded from the combination of $\mathrm{L}_{3} \mathrm{P}_{1}$ ($30 \mathrm{~cm} \times 2.5$ spacing).

Fig. 1. Effect of row to row spacing on the number of effective tillers hill ${ }^{-1}$ of Boro rice (cv. BRRI dhan36) under aerobic system of cultivation

Row to row spacing (cm)

Fig. 3. Effect of row to row spacing on the number of filled grains panicle ${ }^{-1}$ of Boro rice (cv. BRRI dhan36) under aerobic system of cultivation

Fig. 2. Effect of hill to hill spacing on the number of effective tillers hill ${ }^{-1}$ of Boro rice (cv. BRRI dhan36) under aerobic system of cultivation

Hill to hill spacing (cm)

Fig. 4. Effect of hill to hill spacing on the number of filled grains panicle ${ }^{-1}$ of Boro rice (cv. BRRI dhan36) under aerobic system of cultivation

Table 1. Effect of row to row spacing on the growth and yield parameters of Boro rice cv. BRRIdhan 36 under aerobic system of cultivation
$\left.\begin{array}{lcccccccc}\hline \begin{array}{c}\text { Row to row } \\ \text { spacing }\end{array} & \begin{array}{c}\text { Plant } \\ \text { height } \\ (\mathrm{cm})\end{array} & \begin{array}{c}\text { No. of total } \\ \text { tillers hill }^{-1}\end{array} & \begin{array}{c}\text { No. of total } \\ \text { spikelet } \\ \text { panicle }\end{array} & \begin{array}{c}\text { No. of sterile } \\ \text { spikelets } \\ \text { panicle }\end{array} & \begin{array}{c}1000-\text { grain } \\ \text { weight }(\mathrm{g})\end{array} & \begin{array}{c}\text { Straw } \\ \text { yield } \\ (\mathrm{t} \mathrm{ha}\end{array} & \begin{array}{c}\text { Biological } \\ \text { yield }\end{array} \\ \left(\mathrm{t} \text { ha }{ }^{-1}\right)\end{array} \begin{array}{c}\text { Harvest } \\ \text { index } \\ (\%)\end{array}\right]$

In a column, figurers with letter or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT at 5\% level.
NS = Not significant
Table 2. Effect of hill to hill spacing on the growth and yield parameters of boro rice cv. BRRIdhan 36 under aerobic system of cultivation

Hill to hill spacing	Plant height (cm)	No. of total tillers hill $^{-1}$	No. of total spikelet $_{\text {panicle }^{-1}}$	No. of sterile spikelets panicle 1	$1000-$ grain weight (g)	Straw yield $\left(\mathrm{t}^{-1}\right.$ ha $\left.^{-1}\right)$	Biological yield $\left(\mathrm{t} \mathrm{ha}^{-1}\right)$	Harvest index $(\%)$
2.5 cm	74.85	14.30 c	57.89 d	14.38	27.86	4.04 d	6.87 e	41.28 b
5 cm	75.47	16.42 b	64.28 c	16.06	27.67	4.84 c	8.15 d	40.74 b
10 cm	73.96	17.26 b	69.50 b	13.16	27.24	5.01 c	8.66 c	42.24 ab
15 cm	72.85	19.69 a	74.82 a	13.06	27.55	5.43 b	9.38 b	42.19 ab
20 cm	74.48	19.85 a	76.24 a	14.26	27.60	5.89 a	10.33 a	43.03 a
$\mathrm{S} \overline{\mathrm{X}}$	1.37	0.37	0.97	0.85	0.29	0.07	0.08	0.52
CV (\%)	4.41	6.14	4.09	3.57	3.71	7.47	5.67	4.53
Level of significance	NS	0.01	0.01	NS	NS	0.01	0.01	0.01

[^0]Table 3. Interaction effect of row to row and hill to hill spacing on the growth and yield parameters of boro rice cv. BRRI dhan 36 under aerobic system of cultivation

$\mathrm{L}_{1} \mathrm{P}_{1}$	73.43	16.17e	13.53d	64.82de	52.03ef	12.78def	27.82	3.33 fg	4.63f	7.96fg	41.81a-d
$\mathrm{L}_{1} \mathrm{P}_{2}$	74.89	18.28cd	15.27c	63.27 e	53.88de	9.39ef	27.32	3.62de	5.49d	9.11de	39.71cd
$\mathrm{L}_{1} \mathrm{P}_{3}$	73.37	21.14ab	19.37b	72.69b	64.11c	8.58f	27.43	3.90c	5.85bc	9.75c	39.99bcd
$\mathrm{L}_{1} \mathrm{P}_{4}$	69.86	22.81a	20.93a	81.81a	69.86b	11.95def	27.47	4.20b	6.12b	10.32b	40.66bcd
$\mathrm{L}_{1} \mathrm{P}_{5}$	74.89	22.51a	21.14a	82.86a	73.83a	9.03f	28.00	4.90a	6.83a	11.73a	41.80a-d
$\mathrm{L}_{2} \mathrm{P}_{1}$	76.65	13.25h	10.37 e	55.10 f	41.14h	13.96cde	27.82	2.55h	3.38h	5.93i	42.94ab
$\mathrm{L}_{2} \mathrm{P}_{2}$	74.24	15.39ef	12.75d	65.85de	48.03g	17.82abc	28.34	3.19fg	4.37 fg	7.56g	42.29abc
$\mathrm{L}_{2} \mathrm{P}_{3}$	74.50	16.64de	13.26d	66.73cd	56.35d	10.38ef	27.22	3.62de	4.55 f	8.17f	44.31a
$\mathrm{L}_{2} \mathrm{P}_{4}$	72.93	19.48bc	16.13c	71.13bc	61.71c	9.42ef	26.55	3.85cd	5.11e	8.96e	42.93ab
$\mathrm{L}_{2} \mathrm{P}_{5}$	73.22	19.89bc	16.63c	74.42b	62.33c	12.09def	27.20	4.21b	5.58cd	9.79c	42.99ab
$\mathrm{L}_{3} \mathrm{P}_{1}$	74.45	13.47 gh	10.47 e	53.75 f	37.35i	16.40bcd	27.95	2.63h	4.09g	6.72h	39.11d
$\mathrm{L}_{3} \mathrm{P}_{2}$	77.29	15.58 ef	12.96d	63.72de	42.74h	20.98ab	27.34	3.13g	4.66 f	7.79fg	40.22 bcd
$\mathrm{L}_{3} \mathrm{P}_{3}$	74.00	14.00fg	11.33e	69.07bc	48.54g	20.53ab	27.07	3.41ef	4.63f	8.04f	42.42abc
$\mathrm{L}_{3} \mathrm{P}_{4}$	75.75	16.77de	13.83d	71.53bc	53.70de	17.83abc	28.63	3.81cd	5.05e	8.86e	42.98ab
$\mathrm{L}_{3} \mathrm{P}_{5}$	75.35	17.16de	13.72d	71.45bc	49.78fg	21.67a	27.61	4.20b	5.28de	9.48cd	44.31a
S $\overline{\mathrm{X}}$	2.37	0.64	0.46	1.68	1.12	1.48	0.50	0.09	0.11	0.14	0.90
CV (\%)	4.41	6.14	5.14	3.09	5.65	3.57	3.71	5.77	7.47	5.67	4.53
Level of sign.	NS	0.01	0.01	0.01	0.01	0.05	NS	0.01	0.01	0.01	0.01

In a column, figurers with letter or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT at 5% level; $\mathrm{L}_{1}=20 \mathrm{~cm}, \mathrm{~L}_{2}=25 \mathrm{~cm}, \mathrm{~L}_{3}=30 \mathrm{~cm} ; \mathrm{P}_{1}=2.5 \mathrm{~cm}, \mathrm{P}_{2}=5 \mathrm{~cm}, \mathrm{P}_{3}=10 \mathrm{~cm}, \mathrm{P}_{4}=15 \mathrm{~cm}, \mathrm{P}_{5}=20 \mathrm{~cm} ; \mathrm{NS}=$ Not significant

Harvest index: Harvest index was significantly influenced by row to row, hill to hill and also the effect of interaction between row to row and hill to hill spacing. The highest harvest index (43.09\%) was obtained from 25.0 cm row to row spacing (Table 1). Similar results were observed by Kim et al. (1990). The highest harvest index (43.03\%) was obtained from P_{5} (20.0 cm hill to hill spacing, Table 2). The highest harvest index (44.31\%) was recorded from the interaction of $\mathrm{L}_{2} \mathrm{P}_{3}$ ($25 \mathrm{~cm} \times 10 \mathrm{~cm}$ hill to hill spacing) which was statistically similar to $\mathrm{L}_{3} \mathrm{P}_{5}(30 \mathrm{~cm} \times$ 20 cm hill to hill spacing) and the lowest harvest index (39.11\%) was recorded from the combination of $\mathrm{L}_{3} \mathrm{P}_{1}$ (30 $\mathrm{cm} \times 2.5 \mathrm{~cm}$ hill to hill spacing).
The experiment was consisted of three row to row spacing viz. $20.0 \mathrm{~cm}, 25.0 \mathrm{~cm}$ and 30.0 cm and five hill to hill spacing viz. $2.5 \mathrm{~cm}, 5.0 \mathrm{~cm}, 10.0 \mathrm{~cm}, 15.0 \mathrm{~cm}$ and 30.0 cm . The experiment was laid out in a randomized complete block design with 3 replications. The unit plot size was 4.0 $\mathrm{m} \times 2.5 \mathrm{~m}\left(10 \mathrm{~m}^{2}\right)$ and the distance between blocks and plots were 1.0 and 0.75 m , respectively. In 2.5 cm spacing dry seed were sown in furrows maintaining seed to seed distance approximately 2.5 cm in the row where row to row distance was maintained as per treatments. From the results, the present study concludes that higher grain yield of Boro rice cv. BRRI dhan 36 could be maximized by planting at $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ spacing under aerobic system of cultivation.

References

Bouman, B.A.M. 2001. Water-Efficient Management Strategies in Rice Production. Intl. Rice Res. Inst., Los Banos, Philippines. pp. 17-22.
Bouman, B.A.M., Peng, S., Castaneda, A.R., Visperas, R.M., 2005. Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manage. 74, 87-105.
Gomez, K.A. and Gomez, A.A. 1984. Duncan's Multiple Range Test. Statistical Procedures for Agricultural Research. $2^{\text {nd }}$ ed. John Wiley and Sons. New York, pp. 207-215.
Haque, M.S. and Nasiruddin, M. 1988. Effect of population density on yield and agronomic traits of deep water rice. In: Proc. 1987. Intl. Deep Water Rice Workshop. Manila, Philippines. Intl. Rice Res. Inst., pp. 449-453 [Rice Abst. 1990. 13(5): 249].

Hossain, M.Z. 2002. Performance of BRRI dhan32 in the SRI and conventional methods and their technology mixes. M.S. Thesis, Dept. Agron., Bangladesh Agril. Univ., Mymesingh. pp. 28-71.
Kiron, G.M. 2003. Azker Bishaw. Primiair Publication. 77/F-1, East Rampura, Dhaka-1229. p. 150.
Maclean, J.L., D.C. Dawe, B. Hardy, and G.P. Hettel. 2002. Rice Almanac. Los Banos (Philippines): Intl. Rice Res. Inst., Bouake (Cote d’lvoire): West Africa Rice Dev. Asso. Cali (Colombia): Int. Center for Trop. Agric., Rome, Italy. Food and Agric. Org. p. 253.
Miah, M.H.N., Karim, M.A., Rahman, M.S. and Islam, M.S. 1990. Performance of Nizersail mutants under different row spacing. Bangladesh J. Train. and Dev. 3(2): 31-34.

UNDP and FAO. 1998. Land Resources Appraisal of Bangladesh for Agricultural Development. United Nations Development Programme and Food and Agriculture Organization. Rept. 2. Agro-ecological Regions of Bangladesh. pp. 212-221.

Zhao, D.L. 2006. Weed competitiveness and yielding ability of aerobic rice genotypes. Ph.D. Thesis, Wageningen Univ., Netherlands. p. 142.

[^0]: In a column, figurers with letter or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT at 5% level. NS = Not significant

